
PROBLEM SOLVING USING PYTHON UNIT-I

1

Chapter 1 : Introduction-Fundamentals

1.1.What Is Computer Science?

Computer science is fundamentally about is computational problem solving —that is, solving

problems by the use of computation

The Essence of Computational Problem Solving

In order to solve a problem computationally, two things are needed:

 A representation that captures all the relevant aspects of the problem.

 An algorithm that solves the problem by use of the representation.

Limits of Computational Problem Solving

Any algorithm that correctly solves a given problem must solve the problem in a reasonable

amount of time, otherwise it is of limited practical use.

1.2 Computer Algorithms

What Is an Algorithm?

An algorithm is a finite number of clearly described, unambiguous “doable” steps that can be

systematically followed to produce a desired result for given input in a finite amount of time.

Algorithms and Computers: A Perfect Match

Because computers can execute instructions very quickly and reliably without error, algorithms

and computers are a perfect match.

1.3 Computer Hardware

Computer hardware comprises the physical part of a computer system. It includes the all-

important components of the central processing unit (CPU) and main memory. It also includes

peripheral components such as a keyboard, monitor, mouse, and printer.

Binary representation

All information within a computer system is represented using only two digits, 0 and 1, called

binary representation.

The Binary Number System

The term bit stands for binary digit. A byte is a group of bits operated on as a single unit in a

computer system, usually consisting of eight bits.

Operating Systems—Bridging Software and Hardware

An operating system is software that has the job of managing the hardware resources of a given

computer and providing a particular user interface.

PROBLEM SOLVING USING PYTHON UNIT-I

2

BASE-2 REPRESENTATION :

128 64 32 16 8 4 2 1

2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0

0 1 1 0 0 0 1 1 = 99

1.4 Computer Software

Computer software is a set of program instructions, including related data and documentation,

that can be executed by computer.

Syntax, Semantics, and Program Translation :

 The syntax of a language is a set of characters and the acceptable sequences of those

characters.

 The semantics of a language is the meaning associated with each syntactically correct

sequence of characters.

 A compiler is a translator program that translates programs directly into machine code

to be executed by the CPU.

 An interpreter executes program instructions in place of (“running on top of”) the CPU.

Syntax errors are caused by invalid syntax. Semantic (logic) errors are caused by errors in

program logic.

Procedural vs. Object-Oriented Programming

 Python supports both procedural and object-oriented programming.

 Procedural programming and object-oriented programming are two major

programming paradigms in use today.

1.5 THE PROCESS OF COMPUTATIONAL PROBLEM SOLVING

PROBLEM SOLVING USING PYTHON UNIT-I

3

1.6 What is python???

 Python is a general purpose programming language that is often applied in scripting

roles.

 Python is programming language as well as scripting language.

 Python is also called as Interpreted Language.

History of python

 Guido van Rossum is the creator of the Python programming language released in the

early 1990s.

 Its name comes from a 1970s British comedy television show called Monty Python’s

Flying Circus.

 Open sourced from the beginning.

Features of python

 Easy to learn and use

 Interpreted

 Cross platform language

 Free and open source

 Object-Oriented

 Dynamically Typed Language

 Large Standard Library

 GUI programming support

Applications of python

 Web and Internet Development

 GUI

 Software Development

 AI and Machine Learning

 Database access

 Network Programming

 Games and 3D Graphics

Who uses python today??

Installing of python

 Python is well supported and freely available at https://www.python.org/downloads/

 Latest version : 3.8.5

PROBLEM SOLVING USING PYTHON UNIT-I

4

Python IDLE

 An Integrated Development Environment (IDLE) is a bundled set of software tools for

program development.

 An editor for creating and modifying programs

 A translator for executing programs

 A program debugger provides a means of taking control of the execution of a program

to aid in finding program errors

The Python Standard Library is a collection of modules, each providing specific functionality

beyond what is included in the core part of Python.

Python character set

 Letters: Upper case and lower case letters

 Digits: 0,1,2,3,4,5,6,7,8,9

 Special Symbols: Underscore (_), (,), [,], {,}, +, -, *, &, ^, %, $, #, !, Single quote(‘),

Double quotes(“), Back slash(\), Colon(:), and Semi Colon (;)

 White Spaces: (‘\t\n\x0b\x0c\r’), Space, Tab.

Token

 A program in Python contains a sequence of instructions.

 Python breaks each statement into a sequence of lexical components known as tokens.

Variables

A variable is “a name that is assigned to a value.”

 The assignment operator, = , is used to assign values to variables.

 An immutable value is a value that cannot be changed.

 Eg: >>>num=10

 >>> k=num

 >>> print(k)

 O/P : 10

In Python the same variable can be associated with values of different type during

program execution.

 Eg : var = 12 integer

 var = 12.45 float

 var = 'Hello' string

PROBLEM SOLVING USING PYTHON UNIT-I

5

Basic Input and Output

In Python, input is used to request and get information from the user, and print is used to display

information on the screen.

Variable Assignment and Keyboard Input

 The value can come from the user by use of the input function.

 Eg :

 >>> name=input('what is your name : ')

 O/P : what is your name : ABC

 All input is returned by the input function as a string type.

 For the input of numeric values, Python provides built-in type conversion functions

int() and float().

 Eg :

 >>> age=int(input('Enter your age : '))

 O/P : Enter your age : 18

All input is returned by the input function as a string type. Built-in functions int() and float()

can be used to convert a string to a numeric type.

Chapter 2 : Data and Expression

2.1 Literals

 A literal is a sequence of one or more characters that stands for itself.

 Literals often referred to as constant values that have a fixed value.

Python allows several kinds of literals:

 Numeric Literals

 String Literals

Numeric Literals

 A numeric literal is a literal containing only the digits 0–9, a sign character (1 or 2) and

a possible decimal point.

 Commas are never used in numeric literals.

There are 3 Numerical types

 integers : positive or negative whole numbers with no decimal points (Eg : 2, -6, 3, 5)

 Floating point : Consists of Fractional part. (Eg. 1.4, 5.6)

 Complex numbers (Eg. 2+3j)

Limits of Range in floating point representation

 No limit to the size of an integer that can be represented in Python.

 Floating-point values, Python providing a range of 10 -308 to 10 +308 with 16 to 17

digits of precision.

Limitations of floating point representation

 Arithmetic overflow problem :

 If you are trying to multiply two long floating point integers, we get

the result as inf (infinity)

Eg : >>>1.5e200 * 2.0e210

PROBLEM SOLVING USING PYTHON UNIT-I

6

 >>> inf

 Arithmetic underflow problem :

 This problem occurs in division.

 If denominator is larger than numerator, then it will result in zero.

 Eg: 1/10000=0.00001

 Loss of precision problem :

 This problem occurs in division.

 If numerator divided by denominator, then if the result is never ending.
 Eg : 10/3 = 3.33333

String literals in Python

 Single Quote ‘ ‘

 Double Quote “ “

 Triple Quote ‘’’ ‘’’

 Represent the string either in ‘ PYTHON ’ or “ PYTHON “

 Triple Quote is used to represent “ multi line string “

Eg :

‘’’ WELCOME TO

 PYTHON PROGRAMMING ‘’’

Number Formatting

The built-in format function can be used to produce a value containing a specific number of

decimal places.

 Syntax :

 format(value, format_specifier)

 where value is the value to be displayed

 format_specifier can contain specific number of decimal places.

 Eg: format(12/5, '.2f') -> '2.40'

 format(5/7, '.2f') -> '0.71‘

 format specifier '.2f' rounds the result to two decimal places.

String Formatting

 A built-in-function used to control how the strings are displayed.

 Syntax :

 format(value, format_specifier)

 where value is the value to be displayed

 format_specifier can contain a combination of formatting options.

 Formatting options can be left (‘<‘), right (‘ > ‘), center (‘ ^ ‘)

 Default formatting is LEFT justified

Example :

 To produce the string 'Hello' left-justified in a field width of 20 characters would be

done as follows :

 format('Hello', ' < 20') ➝ 'Hello '

 To right-justify the string, the following would be used

 format('Hello', ' > 20') ➝ ' Hello‘

PROBLEM SOLVING USING PYTHON UNIT-I

7

 To center the string the '^' character is used

 format('Hello', '^20') ➝ ' Hello ‘

ESCAPE SEQUENCE IN PYTHON

 Control characters are nonprinting characters used to control the display of output.

 Represented by a combination of characters called an escape sequence .

 An escape sequence is a string of one or more characters used to denote control

characters.

 To print the special characters in the screen, we use the escape sequence.

The backslash (\) serves as the escape character in Python.

EXAMPLE :

>>>print('Hello\nJennifer Smith')

O/P:

 Hello

 Jennifer Smith

>>> print ('what\'s your name?')

 O/P : what's your name?

>>> print ('what's your name?')

 O/P : SyntaxError: invalid syntax

Implicit Line Joining

 Matching parentheses, square brackets, and curly braces can be used to span a logical

program line on more than one physical line.

Explicit Line Joining

 Program lines may be explicitly joined by use of the backslash (\).

Identifier

• An identifier is a sequence of one or more characters used to name a given program

element.

PROBLEM SOLVING USING PYTHON UNIT-I

8

Rules for Framing Identifiers :

 Python is case sensitive.

 Eg : username is not same as userNAME.

 Identifiers may contain letters and digits, but cannot begin with a digit.

 The underscore character, _, is also allowed but it should not be used as the first

character.

 Spaces are not allowed as part of an identifier.

NAMING AN IDENTIFIER

Valid identifiers Invalid identifiers Reason invalid

totalSales ‘totalsales’ Quotes not allowed

totalsales Total sales Spaces not allowed

salesFor2020 2020sales Cannot begin with a digit

Sales_for_2020 _sales2020 Should not begin with an underscore

To check whether a given identifier is a keyword in python.

 >>> 'exit' in dir(__builtins__)

 O/P : True

 >>> 'exit_program' in dir(__builtins__)

 O/P : False

Keywords in python

 Python keywords are special reserved words that have specific meanings.

 Python 3.8, there are thirty-five keywords.

 A keyword is an identifier that has predefined meaning in a programming language.

 Cannot be used as a “regular” identifier.

 Eg: >>> and=10

 O/P : SyntaxError: invalid syntax

The keyword module in python provides two helpful members for dealing with keywords.

PROBLEM SOLVING USING PYTHON UNIT-I

9

 kwlist provides a list of all the python keywords for the version which

you are running.

 iskeyword() provides a way to determine if a string is also a keyword.
Eg :

 >>> import keyword

 >>> keyword.kwlist

O/P : ['False', 'None', 'True', 'and', 'as', 'assert', 'async', 'await', 'break', 'class',

'continue', 'def', 'del', 'elif', 'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in',

'is', 'lambda', 'nonlocal', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield']

 >>> len(keyword.kwlist)

O/P : 35

Datatypes in python

Value :

 A Value can be any letter, number or string.

 Eg, Values are 2, 42.0, and 'Hello, World!'. (These values belong to

 different datatypes.)

 Data type:

 Every value in Python has a data type.

 It is a set of values, and the allowable operations on those values.

type() function is used to determine the type of datatype.

NUMBERS

 Number data type stores Numerical Values.

 This data type is immutable [i.e. values/items cannot be changed].

 Pythn supports integers, floating point numbers and complex numbers.

Integers Long Float Complex

They are often called
as integers or int.
They are positive or
negative whole
numbers with no
decimal points.

They are long integers.
They can also be
represented in octal
and hexa decimal
representation

They are written with
a decimal point
dividing the integer
and the fractional
parts.

They are of the form
a+bj
Where a and b are
floats and j represents
the square root of -
1(which is an
imaginary number).
Real part of the
number is a, and the
imaginary part is b.

PROBLEM SOLVING USING PYTHON UNIT-I

10

Eg : 65 Eg: 5692431L Eg : 56.778 Eg : 5+3j

Sequence

 A sequence is an ordered collection of items, indexed by positive integers.

 It is a combination of mutable (value can be changed) and immutable (values cannot

be changed) datatypes.

 There are three types of sequence data type available in Python, they are

 1. Strings, 2. Lists, 3. Tuples

Strings

 A String in Python consists of a series or sequence of characters.

 Single quotes(' ') E.g., 'This a string in single quotes' ,

 Double quotes(" ") E.g., "'This a string in double quotes'" ,

 Triple quotes(""" """)E.g., """This is a paragraph. It is made up of multiple lines

and sentences."""

 Individual character in a string is accessed using a subscript(index).

 Strings are Immutable i.e the contents of the string cannot be changed after it is created.

Lists

 List is an ordered sequence of items. Values in the list are called elements /items.

 It can be written as a list of comma-separated items (values) between square brackets[].

 Items in the lists can be of different datatypes.

 Eg : lt = [10, -20, 15.5, ‘ABC’, “XYZ”]

Tuples

 In tuple the set of elements is enclosed in parentheses ().

 A tuple is an immutable list.

 Once a tuple has been created, you can't add elements to a tuple or remove elements

from the tuple.

Benefit of Tuple:

 Tuples are faster than lists.

 If the user wants to protect the data from accidental changes, tuple can be used.

 Tuples can be used as keys in dictionaries, while lists can't.

 Altering the tuple data type leads to error.

 Eg : tpl = (10, -20, 15.5, ‘ABC’, “XYZ”)

Dictionaries

 A dictionary maps keys to values.

PROBLEM SOLVING USING PYTHON UNIT-I

11

 Lists are ordered sets of objects, whereas dictionaries are unordered sets.

 Dictionary is created by using curly brackets. i,e.{ }

 Dictionaries are accessed via keys and not via their position.

 The values of a dictionary can be any Python data type. So dictionaries are unordered

key-value pairs(The association of a key and a value is called a key- value pair)

Eg : Creating a dictionary:

 >>> food = {"ham":"yes", "egg" : "yes", "rate":450 }

Set :

 Python also provides two set types, set and frozenset.

 The set type is mutable, while frozenset is immutable.

 They are unordered collections of immutable objects.

Boolean :

 The boolean data type is either True or False.

 In Python, boolean variables are defined by the True and False keywords.

 The keywords True and False must have an Upper Case first letter.

OPERATORS IN PYTHON

 An operator is a symbol that represents an operation that may be performed on one or

more operands.

 Operators that take one operand are called unary operators.

 Operators that take two operands are called binary operators.

 20 - 5 ➝ 15 (- as binary operator)

 - 10 * 2 ➝ -20 (- as unary operator)

Types of operators

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Assignment Operator

 Bitwise Operator

 Identity Operator

 Membership Operator

Arithmetic Operators

Arithmetic operators are used to perform mathematical operations like addition, subtraction,

multiplication, etc.

Operator Meaning Example

+ Add two operands or unary plus x + y+ 2

- Subtract right operand from the left or unary minus x - y- 2

PROBLEM SOLVING USING PYTHON UNIT-I

12

* Multiply two operands x * y

/
Divide left operand by the right one (always results into

float)
x / y

%
Modulus - remainder of the division of left operand by the

right

x % y (remainder

of x/y)

//
Floor division - division that results into whole number

adjusted to the left in the number line
x // y

** Exponent - left operand raised to the power of right
x**y (x to the

power y)

Relational Operators

• Relational operators are used to compare values. It returns either True or False

according to the condition.

Operator Meaning Example

>
Greater than - True if left operand is greater

than the right
x > y

<
Less than - True if left operand is less than the

right
x < y

== Equal to - True if both operands are equal x == y

!= Not equal to - True if operands are not equal x != y

>=
Greater than or equal to - True if left operand

is greater than or equal to the right
x >= y

<=
Less than or equal to - True if left operand is

less than or equal to the right
x <= y

Logical operators

• Logical operators are the and, or, not operators.

PROBLEM SOLVING USING PYTHON UNIT-I

13

Operator Meaning Example

and
True if both the operands

are true
x and y

or
True if either of the

operands is true
x or y

not True if operand is false

(complements the

operand)

not x

Eg:

Assignment Operator

• Assignment operators are used to assign the values to variables.

Operator Example Equivalent to

= x = 5 x = 5

+= x += 5 x = x + 5

-= x -= 5 x = x - 5

*= x *= 5 x = x * 5

/= x /= 5 x = x / 5

%= x %= 5 x = x % 5

BITWISE OPERATORS

• Bitwise operators are working with individual bits of data.

x = True
y = False
print('x and y is',x and y)
print('x or y is',x or y)
print('not x is',not x)

PROBLEM SOLVING USING PYTHON UNIT-I

14

Operator Meaning Example

& Bitwise AND x & y = 0 (0000 0000)

| Bitwise OR x | y = 14 (0000 1110)

~ Bitwise NOT ~x = -11 (1111 0101)

^ Bitwise XOR x ^ y = 14 (0000 1110)

>> Bitwise right shift x >> 2 = 2 (0000 0010)

<< Bitwise left shift x << 2 = 40 (0010 1000)

For example, 2 is 10 in binary and 7 is 111.

In the table : Let x = 10 (0000 1010 in binary) and y = 4 (0000 0100 in binary)

Identity operators

Identity operators : is and is not are used to check the memory locations of two objects.

 is and is not are the identity operators in Python.

 They are used to check if two values (or variables) are located on the same part of the

memory.

 For list, if two variables that are equal does not imply that they are identical. It is

because the interpreter locates them separately in memory although they are equal.

Operator Meaning Example

is
True if the operands are identical (refer to

the same object)
x is True

is not
True if the operands are not identical (do

not refer to the same object)
x is not True

Example :

0x1=5; y1=5

x2=‘Hello’;y2=‘Hello’

x3=[1,2,3]; y3=[1,2,3]

print(x1 is not y1)

print(x2 is y2)

print(x3 is y3)

PROBLEM SOLVING USING PYTHON UNIT-I

15

Membership operators

Membership operators : in and not in for determining the presence of items in a sequence such

as strings, lists and tuples.

 in and not in are the membership operators in Python.

 They are used to test whether a value or variable is found in a sequence(string, list,

tuple, set and dictionary)

 In dictionary, we can only test for the presence of key not the value.

Example :

What Is an Expression?

 An expression is a combination of symbols or single symbol that evaluates to a value.

 A subexpression is any expression that is part of a larger expression.

 Expressions, most commonly, consist of a combination of operators and operands,

 Eg : 4 + (3 * k)

 Operator precedence

 Precedence : Defines the priority of an operator.

Associativity :

 When an expression contains operators with equal precedence then the associativity

property decides which operation is to be performed first.

 Associativity implies the direction of execution and is of two types,left to right and right

to left.

Operator Meaning Example

in True if value/variable is

found in the sequence

5 in x

not in True if value/variable is not

found in the sequence

5 not in x

x= “Hello World”

y={1:’a’,2:’b’}

print(‘H’ in x)

print(‘Hello’ not in x)

print(1 in y)

print(‘a’ in y)

PROBLEM SOLVING USING PYTHON

1

What Is a Control Structure?

A control statement is a statement that determines the control flow of a set of instructions. A

control structure is a set of instructions and the control statements controlling their execution.

Three fundamental forms of control in programming are sequential, selection, and iterative

control.

• Sequential control is an implicit form of control in which instructions are executed in

the order that they are written.

• Selection control is provided by a control statement that selectively executes

instructions.

• iterative control is provided by an iterative control statement that repeatedly executes

instructions.

Indentation in Python

• A header in Python is a specific keyword followed by a colon.

• The set of statements following a header in Python is called a suite(commonly called

a block).

• A header and its associated suite are together referred to as a clause.

Selection Control or Decision Making statement

A selection control statement is a control statement providing selective execution of

instructions.

• if statements

• if-else statements

• Nested if statements

• Multi-way if-elif-else statements

if statement:

• An if statement is a selection control statement based on the value of a given Boolean

expression.

• The if statement executes a statement if a condition is true.

PROBLEM SOLVING USING PYTHON

2

Details of the if Statement

Points to Remember

• A colon (:) must always be followed by the condition.

• The statement(s) must be indented at least one space right of the if statement.

• In case there is more than one statement after the if condition, then each statement

must be indented using the same number of spaces to avoid indentation errors.

• The statement(s) within the if block are executed if the boolean expression evaluates

to true.

Flow Chart for if statement

Example :

num1=eval(input(“Enter First Number: “))

num2=eval(input(“Enter Second Number: “))

if num1-num2==0:

 print(“Both the numbers entered are Equal”)

Output :

Enter First Number: 12

Enter Second Number: 12

Both the numbers entered are Equal

PROBLEM SOLVING USING PYTHON

3

if-else statements

• The if-else statement takes care of a true as well a false condition.

Flow Chart for if-else statement

Example :

num1=eval(input("enter first number"))

num2=eval(input("enter second number"))

if num1>num2:

 print(num1,"is greater than ", num2)

else:

 print(num2,"is greater than ", num1)

Output :

enter first number 12

enter second number 45

45 is greater than 12

Nested if statements

• One if statement inside another if statement then it is called a nested if statement.

Syntax :

if Boolean-expression1:

 if Boolean-expression2:

 statement1

 else:

 statement2

 else:

 statement3

PROBLEM SOLVING USING PYTHON

4

Flow chart

Example :

num=eval(input(“Enter the number :”))

if num>=0:

 if num==0:

 print(“Entered number “, num, “ is Zero”)

 else:

 print(“Entered number “, num, “ is positive”)

else:

 print(“Entered number “, num, “ is negative”)

if...elif...else statement

• Boolean expressions are checked from top to bottom.

• When a true condition is found, the statement associated with it is executed and the

rest of the conditional statements are skipped.

• If none of the conditions are found true then the last else statement is executed.

• If all other conditions are false and if the final else statement is not present then no

action takes place.

Syntax of if...elif...else

if test expression:

 Body of if

 elif test expression:

 Body of elif

 else:

 Body of else

Flow Chart:

PROBLEM SOLVING USING PYTHON

5

Example:

day=int(input(“Enter the day of week:”))

if day==1:

 print(“ Its Monday”)

elif day==2:

 print(“Its Tuesday”)

elif day==3:

 print(“Its Wednesday”)

elif day==4:

 print(“Its Thursday”)

elif day==5:

 print(“Its Friday”)

elif day==6:

 print(“Its Saturday”)

elif day==7:

 print(“ Its Sunday”)

else:

 print(“Sorry!!! Week contains only 7 days”)

Conditional expressions

Syntax :

 Expression1 if condition else Expression2

Example :

 num1=8; num2=9

 print(num1) if num1<num2 else print(num2)

Example:

To check whether the given year is leap year or not

year=int(input(“enter the year”))

if(((year%4==0)and(year%100!=0))or(year%400==0)):

 print(year,”is a leap year”)

else:

 print(year,”is not a leap year”)

Boolean Expressions

The Boolean data type contains two Boolean values, denoted as True and False in Python.

A Boolean expression is an expression that evaluates to a Boolean value.

Iteration statements

• Iteration statements or loop statements allow us to execute a block of statements as

long as the condition is true.

• An iterative control statement is a control statement that allows for the repeated

execution of a set of statements.

Type Of Iteration Statements

• While Loop

• For Loop

http://www.lastnightstudy.com/Show?id=84/Python-3-Iteration-Statements
http://www.lastnightstudy.com/Show?id=84/Python-3-Iteration-Statements

PROBLEM SOLVING USING PYTHON

6

while Statement

A while statement is an iterative control statement that repeatedly executes a set of statements

based on a provided Boolean expression (condition).

Syntax :

 while condition:

 suite (or) statements

Details of while statement

• The reserved keyword while begins with the while statement.

• The test condition is a Boolean expression.

• The colon (:) must follow the test condition, i.e. the while statement be terminated

with a colon (:).

• The statement(s) within the while loop will be executed till the condition is true, i.e.

the condition is evaluated and if the condition is true then the body of the loop is

executed.

• When the condition is false, the execution will be completed out of the loop or in

other words, the control goes out of the loop.

FLOW CHART

Example :

x = 1

while x < 3:

 print(x)

 x = x + 1

OUTPUT :

1

2

PROBLEM SOLVING USING PYTHON

7

Execution

Python Looping Techniques

• An infinite loop is an iterative control structure that never terminates (or eventually

terminates with a system error).

Example :

while True:

 num = int(input("Enter an integer: "))

 print("The double of",num,"is",2 * num)

Definite vs. Indefinite Loops

• A definite loop is a program loop in which the number of times the loop will iterate

can be determined before the loop is executed.

• A indefinite loop is a program loop in which the number of times the loop will iterate

is not known before the loop is executed.

Input Error Checking

• The while statement is well suited for input error checking.

Example :

a=5;b=3

ch=int(input("Enter the choice"))

while ch!=1 and ch!=2:

 ch=int(input("Enter either 1 or 2"))

if ch==1:

 print(a+b)

else:

 print(a-b)

PROBLEM SOLVING USING PYTHON

8

range() function

Example of range() function Output

range(5) [0,1,2,3,4]

range(1,5) [1,2,3,4]

range(1,10,2) [1,3,5,7,9]

range(5,0,-1) [5, 4, 3, 2, 1]

range (-4,4) [-4, -3, -2, -1, 0, 1, 2, 3]

range (-4,4,2) [-4, -2, 0, 2]

range(0,1) [0]

range(1,1) Empty

range(0) Empty

for loop

• A for statement is an iterative control statement that iterates once for each element in

a specified sequence of elements.

• Used to construct definite loops.

PROBLEM SOLVING USING PYTHON

9

Syntax :

for var in sequence:

 statement(s)

 ………………………………

 ……………………………

 ………………………………

• for and in are essential keywords to iterate the sequence of values.

• var takes on each consecutive value in the sequence

• statements in the body of the loop are executed once for each value

Flow chart

Example: for loop

• The for loop repeats a group of statements for a specified number of times.

 for var in range(m,n):

 print var

• function range(m, n) returns the sequence of integers starting from m, m+1, m+2,

m+3…………… n-1.

Example :

for i in range(1,6):

 print(i)

Lists

A list is a linear data structure, thus its elements have a linear ordering.

 A list in Python is a mutable linear data structure, denoted by a comma-separated list

of elements within square brackets, allowing mixed-type elements.

Example :

• lst = [1,2,3,4,5]

• lst = [‘a,’b’,’c’,’d’]

• lst= [1,’ABC’,98.5,’HELLO’]

➢ Operations commonly performed on lists include retrieve, update, insert, remove, and

append.

➢ A list traversal is a means of accessing, one-by-one, the elements of a list.

PROBLEM SOLVING USING PYTHON

10

Python List Type

A list in Python is a mutable, linear data structure of variable length, allowing mixed-type

elements. Mutable means that the contents of the list may be altered. Lists in Python use

zerobased indexing.

All lists have index values 0 ... n-1, where n is the number of elements in the list. Lists are

denoted by a comma-separated list of elements within square brackets

[1, 2, 3] ['one', 'two', 'three'] ['apples', 50, True]

An empty list is denoted by an empty pair of square brackets, [].

lst = [10,20,30,40,50]

lst[0]=10

lst[1]=20

lst[2]=30

lst[3]=40

lst[4]=50

 Negative index : Right to Left

lst[-1]=50

lst[-2]=40

lst[-3]=30

lst[-4]=20

lst[-5]=10

 Append ➔ Add elements at the end of the list.

Syntax : lst.append(element)

Eg : lst.append(60)

 Update ➔ Changing the elements in the list.

Eg : lst[2]=25

 Remove ➔ Delete element in the list.

Eg : del lst[3]

PROBLEM SOLVING USING PYTHON

11

Slicing ➔ Creating Sub-List

lst[1:3]=[20,30]

lst[1:4]=[20,30,40]

lst[:4]=[10,20,30,40]

lst[2:]=[30,40,50]

Built-in-function

Return value but not change the list.

 listname.count(element)

 listname.index(element)

 listname.index(element,start)

Doesn’t Return value but change the list.

 listname.append(element)

 listname.extend(list)

 listname.pop(index)

 listname.insert(index,element)

 listname.remove(element)

 listname.reverse()

Listname.sort()

Assigning & Copying list

>>> lst1=[1,2,3,4]

>>> lst2=lst1

>>> print(lst2)

[1, 2, 3, 4]

List Comprehension

List comprehensions in Python provide a concise means of generating a more varied set of

sequences than those that can be generated by the range function.

 List of elements with squares.

PROBLEM SOLVING USING PYTHON

12

Syntax :

 lst= [expression for variable in range]

Eg:

 lst = [i**2 for i in range(1,6)]

 print(lst)

Example:

lst1=[1,2,3,4]

lst2=[2,5,6,7]

pair=[(x,y)for x in lst1 for y in lst2 if x!=y]

print(pair)

Looping in List

lst = [10,20,30,40,50]

for i in lst:

 print(i)

O/P :

10

20

30

40

50

Operation Fruit= [‘banana’, ’apple’, ’cherry’]

Replace Fruit[2]=‘coconut’ [‘banana’, ’apple’, ’coconut’]

PROBLEM SOLVING USING PYTHON

13

Delete Del fruit[1] [‘banana’, ’cherry’]

Insert Fruit.insert(2,’pear’) [‘banana’, ’apple’, ‘pear’,

‘cherry’]

Append Fruit.append(‘peach’) [‘banana’, ’apple’, ’cherry’,

’peach’]

Sort Fruit.sort() [‘apple’, ‘banana’, ‘cherry’]

Reverse Fruit.reverse() [‘cherry’, ‘banana’, ‘apple’]

Nested Lists

lst = [[1, 2 ,3], [4, 5, 6], [7, 8, 9]]

Tuples

 A tuple is an immutable linear data structure denoted by parentheses(optional) which

cannot be altered.

tup=()

tup1=(“apple”,”banana”,1997,2020)

tup2=(1,2,3,4,5)

tup3=“a”, ”b”, ”c”, ”d”

Basic Operations

a=(10,20,20,40,50,60,10,80) b=(1,2,3,4,5,6)

 Length : len(a) : 8

 Concatentation : a+b : (10, 20, 20, 40, 50, 60, 10, 80, 1, 2, 3, 4, 5, 6)

PROBLEM SOLVING USING PYTHON

14

 Repetition : a*2 : (10, 20, 20, 40, 50, 60, 10, 80, 10, 20, 20, 40, 50, 60, 10, 80)

 Membership : 20 in a : True

 Maximum/Minimum : max(b) : 6 ; min(a) : 10

 Index : a.index(40) : 3

 Count : a.count(20) : 2

 Conversion to Tuple

Converting List to Tuple using tuple() function

lst=[]

for i in range(5):

 #ele=int(input())

 lst.append(i)

print(lst)

tup=tuple(lst)

print(tup)

Sample program for tuple : Counting No.of ODD & EVEN numbers in tuple

input_tuple=()

final_tuple=()

oddc=0

evenc=0

for i in range(1,11):

 input_tuple=(i)

 final_tuple=final_tuple+(input_tuple,)

print(final_tuple)

for x in final_tuple:

 temp=int(x)

 if temp%2==0:

 evenc=evenc+1

PROBLEM SOLVING USING PYTHON

15

 else:

 oddc=oddc+1

print("Count of even numbers : ",evenc)

print("Count of Odd numbers : ",oddc)

FUN

Program Routines:
A program routine is a named group of instructions that accomplishes some task. A routine
may be invoked (called) as many times as needed in a given program. A function is Python’s
version of a program routine.
What is a Function routine?

• A routine is a named group of instructions performing some task.
• A routine can be invoked (called) as many times as needed in a given program
• A function is Python’s version of a program routine.

Advantages of Function:
• Helpful debugging your code.
• Reusability of code.
• Easier to understand.
• Easier to maintain.

Function definition:
• Every function should start with ‘def’ keyword.
• Every function should have name(not equal to any keyword)
• Parameters / Arguments (optional) included in b/w parenthesis.(formal)
• Every function name with/without arguments should end with(:)
• return empty / value
• Multi value return can be done (tuples)
• Every function must be defined before it is called

Syntax:
def function_name(arg1, arg2, …. arg n) :
 program statement 1
 program statement 2

 return
Function call:

• Function name
• Arguments / Parameters(actual)

Actual arguments & Formal parameters
• Actual arguments, or simply “arguments,” are the values passed to functions to be

operated on.
• Formal parameters, or simply “parameters,” are the “placeholder” names for the

arguments passed.
Value-returning functions:

• A value-returning function in Python is
and is therefore similar to a mathematical function.

Non-value-returning functions
• A non-value-returning function is a function called for its side effects, and not for a

returned function value.
The local and global scope of a variable

• Variables and parameters that are initialised within a function including parameters,
are said to exist in that function’s local scope. Variables that exist in local scope are
called local variables.

• Variables that are assigned outside functions are said to exist in global scope.
Therefore, variables that exist in global scope are called global variables.

NCTIONS – UNIT III NOTES

A program routine is a named group of instructions that accomplishes some task. A routine
may be invoked (called) as many times as needed in a given program. A function is Python’s

What is a Function routine?

A routine is a named group of instructions performing some task.
A routine can be invoked (called) as many times as needed in a given program
A function is Python’s version of a program routine.

Helpful debugging your code.

Every function should start with ‘def’ keyword.
Every function should have name(not equal to any keyword)
Parameters / Arguments (optional) included in b/w parenthesis.(formal)

e with/without arguments should end with(:)
empty / value

Multi value return can be done (tuples)
be defined before it is called.

def function_name(arg1, arg2, …. arg n) :
program statement 1
program statement 2

 Equal to the function definition
Arguments / Parameters(actual)

Actual arguments & Formal parameters:
arguments, or simply “arguments,” are the values passed to functions to be

Formal parameters, or simply “parameters,” are the “placeholder” names for the

returning function in Python is a program routine called for its return value,

and is therefore similar to a mathematical function.
returning functions:

returning function is a function called for its side effects, and not for a
returned function value.

l and global scope of a variable:
Variables and parameters that are initialised within a function including parameters,
are said to exist in that function’s local scope. Variables that exist in local scope are
called local variables.

assigned outside functions are said to exist in global scope.
Therefore, variables that exist in global scope are called global variables.

1

A program routine is a named group of instructions that accomplishes some task. A routine
may be invoked (called) as many times as needed in a given program. A function is Python’s

A routine can be invoked (called) as many times as needed in a given program

Parameters / Arguments (optional) included in b/w parenthesis.(formal)

the function definition

arguments, or simply “arguments,” are the values passed to functions to be

Formal parameters, or simply “parameters,” are the “placeholder” names for the

a program routine called for its return value,

returning function is a function called for its side effects, and not for a

Variables and parameters that are initialised within a function including parameters,
are said to exist in that function’s local scope. Variables that exist in local scope are

assigned outside functions are said to exist in global scope.
Therefore, variables that exist in global scope are called global variables.

FUN

LOCAL VARIABLE :
• A local variable is a variable that is only accessible from within the function it

Such variables are said to have local scope.
GLOBAL VARIABLE :

• A global variable is a variable defined outside of any function definition. Such
variables are said to have global scope. The use of global variables is considered bad
programming practice.

Local and global variables with the same name
• Local Variables Cannot be Used in Global Scope
• Accessing a local variable outside the scope will cause an error.

return statement
• The return statement is used to return a value from the function.
• It is also used to return from a function, i.e. break out of the function.

Eg:
def minimum(a,b):
 if a<b:
 return a
 elif b<a:
 return b
 else:
 return “Both the numbers are equal”
 print(minimum(100,85))
Output:
8 is minimum
Returning multi-values
def compute(num1):
 print(“Number = “,num1)
 return num1*num1, num1*num1*num1
square,cube=compute(4)
print(“Square = “,square,”Cube = “,cube)
Call by value:

• A copy of actual argument is passed to respective formal arguments.
• Any changes made to the formal arguments will not be visible outside the

function.
Call by reference:

• Location of of actual argument is passed to respective formal arguments.
• Any changes made to the formal arguments will also reflect in actual arguments.

Built-in-function:
• Mathematical Functions
• ceil() :-Returns the smallest integral value greater than the number. If number is

already integer, same number is returned.

NCTIONS – UNIT III NOTES

A local variable is a variable that is only accessible from within the function it
Such variables are said to have local scope.

A global variable is a variable defined outside of any function definition. Such
variables are said to have global scope. The use of global variables is considered bad

tice.

Local and global variables with the same name

Local Variables Cannot be Used in Global Scope
Accessing a local variable outside the scope will cause an error.

The return statement is used to return a value from the function.
It is also used to return from a function, i.e. break out of the function.

return “Both the numbers are equal”

print(“Number = “,num1)
return num1*num1, num1*num1*num1

print(“Square = “,square,”Cube = “,cube)

A copy of actual argument is passed to respective formal arguments.
Any changes made to the formal arguments will not be visible outside the

Location of of actual argument is passed to respective formal arguments.
Any changes made to the formal arguments will also reflect in actual arguments.

Mathematical Functions
smallest integral value greater than the number. If number is

already integer, same number is returned.

2

A local variable is a variable that is only accessible from within the function it resides.

A global variable is a variable defined outside of any function definition. Such
variables are said to have global scope. The use of global variables is considered bad

It is also used to return from a function, i.e. break out of the function.

A copy of actual argument is passed to respective formal arguments.
Any changes made to the formal arguments will not be visible outside the scope of the

Location of of actual argument is passed to respective formal arguments.
Any changes made to the formal arguments will also reflect in actual arguments.

smallest integral value greater than the number. If number is

FUNCTIONS – UNIT III NOTES

3

• floor() :- Returns the greatest integral value smaller than the number. If number is
already integer, same number is returned.

• fabs() :- Returns the absolute value of the number.
• gcd() :- Used to compute the greatest common divisor of 2 numbers mentioned in its

arguments
Recursive function:

• A function is said to be recursive if a statement within the body of the function
calls itself.

• Eg:
def factorial(n):

 if n==0:
 return 1
 return n*factorial(n-1)

print(factorial(5))

Advantages:

• Recursive functions make the code look clean and elegant.
• A complex task can be broken down into simpler sub-problems using recursion.
• Sequence generation is easier with recursion than using some nested iteration.

Dis-Advantages:
• The logic behind recursion is hard to follow through.
• Recursive calls are expensive (inefficient) as they take up a lot of memory and time.
• Recursive functions are hard to debug.

Types of Arguments:
• Positional Arguments
• Keyword Arguments
• Default Arguments
• Variable length Arguments

Positional Arguments:
• Number of arguments should be same in both function call and function definition.
• A positional argument is an argument that is assigned to a particular parameter based

on its position in the argument list.
• Order or Position should be followed.
Eg:
def display(a,b): #function definition
 print(a,b)
display(10,20) #function call

Keyword Arguments:
• A keyword argument is an argument that is specified by parameter name.
• Order or Position should not be followed.
• Initialisation will be done based on the keyword. (name of identifier)

Eg:
def display(a,b):
 print(a,b)
display(b=10,a=20)
Default Arguments:

• An argument that can be optionally provided in a given function call. When not
provided, the corresponding parameter provides a default value.

• Number of arguments need not be same in both function call and function definition.
• Some of arguments will be consider as default arguments.

FUNCTIONS – UNIT III NOTES

4

Eg:
def display(a,b,c=30):
 print(a,b,c)
display(10,20)
Variable Length Arguments:

• Arbitrary number of arguments.
• By placing * as prefix to the argument of function definition.

Eg:
def display(*courses):
 for i in courses:
 print(i)
display("BCA","MCA","CS","IT")

OOP’S CONCEPTS

Main Concepts of Object-Oriented Programming (OOPs)
•Class
•Objects•Objects
•Polymorphism
•Encapsulation
•Inheritance

Oriented Programming (OOPs)

Class
A class is a collection of objects.

A class contains the blueprints or the prototype from which the objects are being
created.

It is a logical entity that contains some attributes and methods.

Some points on Python class:

•Classes are created by keyword class.

•Attributes are the variables that belong to a class.

•Attributes are always public and can be accessed using the dot (.) operator.

•Eg.: Myclass.Myattribute

A class contains the blueprints or the prototype from which the objects are being

It is a logical entity that contains some attributes and methods.

Attributes are the variables that belong to a class.

Attributes are always public and can be accessed using the dot (.) operator.

Syntax
class ClassName:

Statement-1

.

..

.

Statement-N

Objects
The object is an entity that has a state and behavior associated with it.

An object consists of :

•State: It is represented by the attributes of an object. It also reflects the properties
of an object.of an object.

•Behavior: It is represented by the methods of an object. It also reflects the
response of an object to other objects.

•Identity: It gives a unique name to an object and enables one object to interact
with other objects.

The object is an entity that has a state and behavior associated with it.

It is represented by the attributes of an object. It also reflects the properties

It is represented by the methods of an object. It also reflects the

It gives a unique name to an object and enables one object to interact

The self
1.Class methods must have an extra first parameter in the method definition. We
do not give a value for this parameter when we call the method, Python provides
it

2.If we have a method that takes no arguments, then we still have to have one
argument.argument.

3.This is similar to this pointer in C++ and this reference in Java.

Class methods must have an extra first parameter in the method definition. We
do not give a value for this parameter when we call the method, Python provides

If we have a method that takes no arguments, then we still have to have one

This is similar to this pointer in C++ and this reference in Java.

__init__ method
•The __init__ method is similar to constructors in C++ and Java.

•Constructors are used to initializing the object’s state.

•Like methods, a constructor also contains a collection of statements(i.e.
instructions) that are executed at the time of Object creation. instructions) that are executed at the time of Object creation.

•It runs as soon as an object of a class is instantiated.

•The method is useful to do any initialization you want to do with your object.

__ method is similar to constructors in C++ and Java.

Constructors are used to initializing the object’s state.

Like methods, a constructor also contains a collection of statements(i.e.
instructions) that are executed at the time of Object creation. instructions) that are executed at the time of Object creation.

It runs as soon as an object of a class is instantiated.

The method is useful to do any initialization you want to do with your object.

CODING OUTPUT

Polymorphism

Inheritance

